Cart (Loading....) | Create Account
Close category search window
 

Fast Compressed Sensing SAR Imaging Based on Approximated Observation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jian Fang ; Sch. of Math. & Stat., Xi'an Jiaotong Univ., Xi'an, China ; Zongben Xu ; Bingchen Zhang ; Wen Hong
more authors

In recent years, compressed sensing (CS) has been applied in the field of synthetic aperture radar (SAR) imaging and shows great potential. The existing models are, however, based on application of the sensing matrix acquired by the exact observation functions. As a result, the corresponding reconstruction algorithms are much more time consuming than traditional matched filter (MF)-based focusing methods, especially in high resolution and wide swath systems. In this paper, we formulate a new CS-SAR imaging model based on the use of the approximated SAR observation deducted from the inverse of focusing procedures. We incorporate CS and MF within an sparse regularization framework that is then solved by a fast iterative thresholding algorithm. The proposed model forms a new CS-SAR imaging method that can be applied to high-quality and high-resolution imaging under sub-Nyquist rate sampling, while saving the computational cost substantially both in time and memory. Simulations and real SAR data applications support that the proposed method can perform SAR imaging effectively and efficiently under Nyquist rate, especially for large scale applications.

Published in:

Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of  (Volume:7 ,  Issue: 1 )

Date of Publication:

Jan. 2014

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.