Cart (Loading....) | Create Account
Close category search window
 

Learning Phenotype Structure Using Sequence Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yuhai Zhao ; Sch. of Inf. Sci. & Eng., Northeastern Univ., Shenyang, China ; Guoren Wang ; Xiang Zhang ; Yu, J.X.
more authors

Advanced microarray technologies have enabled to simultaneously monitor the expression levels of all genes. An important problem in microarray data analysis is to discover phenotype structures. The goal is to 1) find groups of samples corresponding to different phenotypes (such as disease or normal), and 2) for each group of samples, find the representative expression pattern or signature that distinguishes this group from others. Some methods have been proposed for this issue, however, a common drawback is that the identified signatures often include a large number of genes but with low discriminative power. In this paper, we propose a g*-sequence model to address this limitation, where the ordered expression values among genes are profitably utilized. Compared with the existing methods, the proposed sequence model is more robust to noise and allows to discover the signatures with more discriminative power using fewer genes. This is important for the subsequent analysis by the biologists. We prove that the problem of phenotype structure discovery is NP-complete. An efficient algorithm, FINDER, is developed, which includes three steps: 1) trivial g*-sequences identifying, 2) phenotype structure discovery, and 3) refinement. Effective pruning strategies are developed to further improve the efficiency. We evaluate the performance of FINDER and the existing methods using both synthetic and real gene expression data sets. Extensive experimental results show that FINDER dramatically improves the accuracy of the phenotype structures discovered (in terms of both statistical and biological significance) and detects signatures with high discriminative power. Moreover, it is orders of magnitude faster than other alternatives.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:26 ,  Issue: 3 )

Date of Publication:

March 2014

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.