By Topic

Vibration and Noise in a HDD Spindle Motor Arising from the Axial UMF Ripple

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Sung, S.J.$^{1}$ Department of Mechanical Engineering,, Hanyang University,, Seoul , Korea ; Jang, G.H. ; Jang, J.W. ; Song, J.Y.
more authors

We investigated numerically the characteristics of axial unbalanced magnetic force (UMF) due to axial magnetic design in the spindle motor of a hard disk drive (HDD). The HDD spindle motor has a magnet-overhang and a pulling plate to generate the axial magnetic force, which is applied to the fluid dynamic bearings (FDBs) as a preload in order to increase the axial stiffness of the HDD spindle system. However, the axial UMF ripple with the least common multiple (LCM) harmonics of pole and slot is generated by the pulling plate and magnet-overhang in the HDD spindle motor. We also investigated the characteristics of the axial magnetic forces generated in the pulling plate and the stator core, separately. We found that the axial magnetic forces generated in the pulling plate and the stator core have opposite phases. Furthermore, we proposed an optimal position of permanent magnet with respect to the stator core. We experimentally verified that the LCM harmonics of pole and slot in the vibration and acoustic noise mostly originate from axial UMF ripple and that the proposed design can effectively minimize the LCM harmonics in the vibration and acoustic noise of HDD systems.

Published in:

Magnetics, IEEE Transactions on  (Volume:49 ,  Issue: 6 )