By Topic

The Current Distribution, Resistance and Internal Inductance of Linear Power System Conductors—A Review of Explicit Equations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Vincent T. Morgan ; National Measurement Institute Australia, Lindfield, Australia

This paper reviews the present state of knowledge of explicit equations for calculating the dc and ac current distributions and the resistances and internal inductances per-unit length of linear electrical conductors used in power transmission and distribution systems. These conductors may be homogeneous wire or rod, tubular, triangular, elliptical or rectangular busbars, helically stranded nonmagnetic conductors (AAC or AAAC), or bimetallic stranded conductors, such as the commonly used aluminum conductor steel reinforced (ACSR). In general, the current density in an isothermal homogeneous conductor is uniform with direct current (dc), but with alternating current (ac), skin effect, and proximity effect, can cause nonuniform distribution of current, hence, increased resistance and decreased internal inductance. With stranded steel-cored conductors, the dc density within each section is inversely proportional to its resistivity. However, with ac at power frequency, the spiraling of the currents in the nonferrous layers causes a longitudinal magnetic flux in the steel core, which results in hysteresis and eddy current power loss in the core, and a circular magnetic flux in the nonferrous wires, which results in a nonuniform distribution of current density between the layers of nonferrous wires. These effects give rise to increased resistance and reduced internal inductance. The effects of current amplitude, frequency, temperature, and tensile stress on conductor properties are discussed.

Published in:

IEEE Transactions on Power Delivery  (Volume:28 ,  Issue: 3 )