By Topic

Spectral Discrimination of Insect Defoliation Levels in Mopane Woodland Using Hyperspectral Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Samuel Adelabu ; Geogr. Dept., Univ. of KwaZulu-Natal, Pietermaritzburg, South Africa ; Onisimo Mutanga ; Elhadi Adam ; Reuben Sebego

Mopane woodland are a source of valuable resources that contribute substantially to rural economies and nutrition across Southern Africa. However, a number of factors have, of late, brought the sustainability of the mopane woodland resources into question. One of such factors is the difficulty in monitoring of defoliation process within the woodland. In this study we set out to discriminate the levels of change in forest canopy cover detectable after insect defoliation using ground based hyperspectral measurements in mopane woodland. Canopy spectral measurements were taken from three levels of defoliation: Undefoliated (UD), Partly defoliated (PD) and Refoliating plants (R) using ASD FieldSpec HandHeld 2. A pre-filtering approach (ANOVA) was compared with random forest independent variable selector in selecting the significant wavelengths for classification. Furthermore, a backward feature elimination method was used to select optimal wavelengths for discriminating the different levels of defoliation in mopane woodland. Results show that optimal wavelengths located at 707 nm, 710 nm, 711 nm, 712 nm, 713 nm, 714 nm, 727 nm, and 1066 nm were able to discriminate between the three levels of defoliation. The results further show that there was no significant difference in the overall accuracy of classification when random forest variable selector was used 82.42% (Kappa = 0.64) and the pre-filtering approach (ANOVA) 81.21% (Kappa = 0.68) used before building the classification. Overall, the study clearly demonstrated that the dynamic process of defoliation in mopane woodland can be assessed and detected using hyperspectral dataset and effective algorithm for discrimination.

Published in:

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing  (Volume:7 ,  Issue: 1 )