Cart (Loading....) | Create Account
Close category search window
 

A Kernel-Based Feature Selection Method for SVM With RBF Kernel for Hyperspectral Image Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Bor-Chen Kuo ; Grad. Inst. of Educ. Meas. & Stat., Nat. Taichung Univ. of Educ., Taichung, Taiwan ; Hsin-Hua Ho ; Cheng-Hsuan Li ; Chih-Cheng Hung
more authors

Hyperspectral imaging fully portrays materials through numerous and contiguous spectral bands. It is a very useful technique in various fields, including astronomy, medicine, food safety, forensics, and target detection. However, hyperspectral images include redundant measurements, and most classification studies encountered the Hughes phenomenon. Finding a small subset of effective features to model the characteristics of classes represented in the data for classification is a critical preprocessing step required to render a classifier effective in hyperspectral image classification. In our previous work, an automatic method for selecting the radial basis function (RBF) parameter (i.e., σ) for a support vector machine (SVM) was proposed. A criterion that contains the between-class and within-class information was proposed to measure the separability of the feature space with respect to the RBF kernel. Thereafter, the optimal RBF kernel parameter was obtained by optimizing the criterion. This study proposes a kernel-based feature selection method with a criterion that is an integration of the previous work and the linear combination of features. In this new method, two properties can be achieved according to the magnitudes of the coefficients being calculated: the small subset of features and the ranking of features. Experimental results on both one simulated dataset and two hyperspectral images (the Indian Pine Site dataset and the Pavia University dataset) show that the proposed method improves the classification performance of the SVM.

Published in:

Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of  (Volume:7 ,  Issue: 1 )

Date of Publication:

Jan. 2014

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.