By Topic

Efficient Semi-Supervised Feature Selection: Constraint, Relevance, and Redundancy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Benabdeslem, K. ; LIRIS, Univ. of Lyon 1, Lyon, France ; Hindawi, M.

This paper describes a three-level framework for semi-supervised feature selection. Most feature selection methods mainly focus on finding relevant features for optimizing high-dimensional data. In this paper, we show that the relevance requires two important procedures to provide an efficient feature selection in the semi-supervised context. The first one concerns the selection of pairwise constraints that can be extracted from the labeled part of data. The second procedure aims to reduce the redundancy that could be detected in the selected relevant features. For the relevance, we develop a filter approach based on a constrained Laplacian score. Finally, experimental results are provided to show the efficiency of our proposal in comparison with several representative methods.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:26 ,  Issue: 5 )