Cart (Loading....) | Create Account
Close category search window
 

LocaWard: A security and privacy aware location-based rewarding system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ming Li ; Dept. of Electr. & Comput. Eng., Mississippi State Univ., Starkville, MS, USA ; Salinas, S. ; Pan Li

The proliferation of mobile devices has driven the mobile marketing to surge in the past few years. Emerging as a new type of mobile marketing, mobile location-based services (MLBSs) have attracted intense attention recently. Unfortunately, current MLBSs have a lot of limitations and raise many concerns, especially about system security and users' privacy. In this paper, we propose a new location-based rewarding system, called LocaWard, where mobile users can collect location-based tokens from token distributors, and then redeem their gathered tokens at token collectors for beneficial rewards. Tokens act as virtual currency. The token distributors and collectors can be any commercial entities or merchants that wish to attract customers through such a promotion system, such as stores, restaurants, and car rental companies. We develop a security and privacy aware location-based rewarding protocol for the LocaWard system, and prove the completeness and soundness of the protocol. Moreover, we show that the system is resilient to various attacks and mobile users' privacy can be well protected in the meantime. We finally implement the system and conduct extensive experiments to validate the system efficiency in terms of computation, communication, energy consumption, and storage costs.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:25 ,  Issue: 2 )

Date of Publication:

Feb. 2014

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.