By Topic

Spectrum sensing and power efficiency trade-off optimisation in cognitive radio networks over fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Hassan, E.S. ; Dept. of Electron. & Electr. Commun., Menoufia Univ., Menouf, Egypt

Multiple secondary users can cooperate to increase the reliability of spectrum sensing in cognitive radio (CR) networks. However, the total transmission power grows approximately linearly with the number of cooperative secondary users. This study proposes a new approach to optimise the trade-off between sensing reliability and power efficiency in cooperative CR networks over fading channels. The authors assume K cooperative secondary users each collect N samples during the sensing time. The proposed approach is based on dividing the spectrum sensing into two phases. In the first phase, the authors use only n1 of N samples (n1N), to check the channels state, then k of K cooperative secondary users (kK), which are in deeply faded channels are discarded. The authors call this n1 a check point of the sensing time. The spectrum sensing with relatively less-faded channels are continued during the second phase. Therefore there is a check point at which the sensing time can be optimised in order to maximise the probability of detection and the power efficiency. Several experiments are carried out to test the performance of the proposed approach in terms of probability of detection and power efficiency. The obtained results show that the proposed approach enhances the probability of detection and shortens the optimal sensing time. Moreover, it improves the overall power efficiency.

Published in:

Communications, IET  (Volume:7 ,  Issue: 3 )