By Topic

Multi-View Video Representation Based on Fast Monte Carlo Surface Reconstruction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Salvador, J. ; Image & Video Process. Group, Univ. Politec. de Catalunya, Barcelona, Spain ; Casas, J.R.

This paper provides an alternative solution to the costly representation of multi-view video data, which can be used for both rendering and scene analyses. Initially, a new efficient Monte Carlo discrete surface reconstruction method for foreground objects with static background is presented, which outperforms volumetric techniques and is suitable for GPU environments. Some extensions are also presented, which allow a speeding up of the reconstruction by exploiting multi-resolution and temporal correlations. Then, a fast meshing algorithm is applied, which allows interpolating a continuous surface from the discrete reconstructed points. As shown by the experimental results, the original video frames can be approximated with high accuracy by projecting the reconstructed foreground objects onto the original viewpoints. Furthermore, the reconstructed scene can be easily projected onto any desired virtual viewpoint, thus simplifying the design of free-viewpoint video applications. In our experimental results, we show that our techniques for reconstruction and meshing compare favorably with the state-of-the-art, and we also introduce a rule-of-thumb for effective application of the method with a good quality versus representation cost trade-off.

Published in:

Image Processing, IEEE Transactions on  (Volume:22 ,  Issue: 9 )