By Topic

The Effect of 2-Directional Magnetic Biasing Used for Tuning of a Ferrite-Loaded Re-entrant Cavity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Vollinger, C. ; CERN, Eur. Organ. for Nucl. Res., Geneva, Switzerland ; Caspers, F. ; Jensen, E.

Cavities that are partially filled with ferrite material provide a tunable resonance frequency by making use of the changing μ-characteristics of ferrites when exposed to an external magnetic bias field. The concept of using either parallel or perpendicular magnetic biasing to reach a certain resonance frequency of a cavity has been known for many years. However, a cavity based on superposition of perpendicular and parallel magnetic fields to obtain improved ferrite characteristics was suggested in W. R. Smythe “Reducing ferrite tuner power loss by bias field rotation,” IEEE Trans. Nucl. Sci., vol. 30, no. 4, pp. 273-275, 1983, but to our knowledge was neither tested nor built. Such a 2-directional biasing is expected to provide a reduction in RF losses for an identical tuning range as compared with the classical 1-directional magnetic bias. We have successfully tested this theory with a measurement set-up consisting of a ferrite-filled cavity, exposed to external biases that allow the clear separation of the two orientations of superposed magnetic bias fields. The outcome is an enlargement of tuning range with high cavity Q and the possibility of fast tuning. In this paper, we describe the measurement set-up and present the tuning ranges that we attained by applying different bias schemes.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:60 ,  Issue: 3 )