By Topic

Sequential Blind Identification of Underdetermined Mixtures Using a Novel Deflation Scheme

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mingjian Zhang ; Sch. of Autom., Guangdong Univ. of Technol., Guangzhou, China ; Simin Yu ; Gang Wei

In this brief, we consider the problem of blind identification in underdetermined instantaneous mixture cases, where there are more sources than sensors. A new blind identification algorithm, which estimates the mixing matrix in a sequential fashion, is proposed. By using the rank-1 detecting device, blind identification is reformulated as a constrained optimization problem. The identification of one column of the mixing matrix hence reduces to an optimization task for which an efficient iterative algorithm is proposed. The identification of the other columns of the mixing matrix is then carried out by a generalized eigenvalue decomposition-based deflation method. The key merit of the proposed deflation method is that it does not suffer from error accumulation. The proposed sequential blind identification algorithm provides more flexibility and better robustness than its simultaneous counterpart. Comparative simulation results demonstrate the superior performance of the proposed algorithm over the simultaneous blind identification algorithm.

Published in:

Neural Networks and Learning Systems, IEEE Transactions on  (Volume:24 ,  Issue: 9 )