Cart (Loading....) | Create Account
Close category search window
 

CPU Scheduling for Power/Energy Management on Multicore Processors Using Cache Miss and Context Switch Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Datta, A.K. ; Dept. of Comput. Sci., Univ. of Nevada at Las Vegas, Las Vegas, NV, USA ; Patel, R.

Power and energy have become increasingly important concerns in the design and implementation of today's multicore/manycore chips. In this paper, we present two priority-based CPU scheduling algorithms, Algorithm Cache Miss Priority CPU Scheduler (CM-PCS) and Algorithm Context Switch Priority CPU Scheduler (CS-PCS), which take advantage of often ignored dynamic performance data, in order to reduce power consumption by over 20 percent with a significant increase in performance. Our algorithms utilize Linux cpusets and cores operating at different fixed frequencies. Many other techniques, including dynamic frequency scaling, can lower a core's frequency during the execution of a non-CPU intensive task, thus lowering performance. Our algorithms match processes to cores better suited to execute those processes in an effort to lower the average completion time of all processes in an entire task, thus improving performance. They also consider a process's cache miss/cache reference ratio, number of context switches and CPU migrations, and system load. Finally, our algorithms use dynamic process priorities as scheduling criteria. We have tested our algorithms using a real AMD Opteron 6134 multicore chip and measured results directly using the “KillAWatt” meter, which samples power periodically during execution. Our results show not only a power (energy/execution time) savings of 39 watts (21.43 percent) and 38 watts (20.88 percent), but also a significant improvement in the performance, performance per watt, and execution time · watt (energy) for a task consisting of 24 concurrently executing benchmarks, when compared to the default Linux scheduler and CPU frequency scaling governor.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:25 ,  Issue: 5 )

Date of Publication:

May 2014

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.