By Topic

Intra Prediction Based on Markov Process Modeling of Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Fatih Kamisli ; Department of Electrical and Electronics Engineering, Middle East Technical University, Cankaya, Turkey

In recent video coding standards, intraprediction of a block of pixels is performed by copying neighbor pixels of the block along an angular direction inside the block. Each block pixel is predicted from only one or few directionally aligned neighbor pixels of the block. Although this is a computationally efficient approach, it ignores potentially useful correlation of other neighbor pixels of the block. To use this correlation, a general linear prediction approach is proposed, where each block pixel is predicted using a weighted sum of all neighbor pixels of the block. The disadvantage of this approach is the increased complexity because of the large number of weights. In this paper, we propose an alternative approach to intraprediction, where we model image pixels with a Markov process. The Markov process model accounts for the ignored correlation in standard intraprediction methods, but uses few neighbor pixels and enables a computationally efficient recursive prediction algorithm. Compared with the general linear prediction approach that has a large number of independent weights, the Markov process modeling approach uses a much smaller number of independent parameters and thus offers significantly reduced memory or computation requirements, while achieving similar coding gains with offline computed parameters.

Published in:

IEEE Transactions on Image Processing  (Volume:22 ,  Issue: 10 )