By Topic

Localization of Taps on Solid Surfaces for Human-Computer Touch Interfaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Reju, V.G. ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore ; Khong, A.W.H. ; Sulaiman, A.B.

Localization of impacts on solid surfaces is a challenging task due to dispersion where the velocity of wave propagation is frequency dependent. In this work, we develop a source localization algorithm on solids with applications to human-computer interface. We employ surface-mounted piezoelectric shock sensors that, in turn, allow us to convert existing flat surfaces to a low-cost touch interface. The algorithm estimates the time-differences-of-arrival between the signals via onset detection in the time-frequency domain. The proposed algorithm is suitable for vibration signals generated by a metal stylus and a finger. The validity of the algorithm is then verified on an aluminium and a glass plate surface.

Published in:

Multimedia, IEEE Transactions on  (Volume:15 ,  Issue: 6 )