By Topic

Multi-sensor tracking and lane estimation in highly automated vehicles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Thomaidis, G. ; Inst. of Commun. & Comput. Syst., Athens, Greece ; Kotsiourou, C. ; Grubb, G. ; Lytrivis, P.
more authors

Highly automated driving brings the next generation of driver assistance systems for increased safety and comfort. Automated vehicles execute part of the driving tasks whereas the driver is still involved in controlling the vehicle. Higher degrees of automation pose more strict requirements for perception systems in terms of performance and robustness. The HAVEit EU project investigates the application and validation of highly automated vehicle systems, technologies that are going to have a great impact on transport of the future. The purpose of this study is to examine in detail the problem of multi-sensor fusion for target tracking and road environment perception in an automated vehicle application. A series of algorithms are described for solving the data association and track estimation problems, both at sensor and central levels. The techniques that are used for multi-sensor lane estimation are also presented. Finally, results from simulated and real-time tests are given to demonstrate the performance of the algorithm.

Published in:

Intelligent Transport Systems, IET  (Volume:7 ,  Issue: 1 )