Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Agent-based approach for crowded pedestrian evacuation simulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xianye Ben ; Sch. of Inf. Sci. & Eng., Shandong Univ., Jinan, China ; Xifa Huang ; Zhaoyi Zhuang ; Rui Yan
more authors

Pedestrian evacuation has long been a vital safety concern for any large indoor facility, for example, gymnasium or stadium. To efficiently simulate crowded pedestrian evacuation, an agent-based modelling approach in the cellular automata (CA) environment is proposed in this study. Different from a stand-alone CA method which roughly describes the external environment, the proposed agent-based modelling approach can describe individual behaviour more accurately. In order to verify the crowded pedestrian evacuation simulation and reflect the behaviour of pedestrian crowds' evacuation, this study simulates four evacuation scenarios as follows: (i) an ordered activity area with no obstacles, (ii) an unordered activity area with no obstacles, (iii) an ordered activity area with obstacles and (iv) an unordered activity area with obstacles. The effects of the parameters on the evacuation simulation process and the effects of maximal endurance capability on the number of casualties are also analysed. Furthermore, the order of evacuation of pedestrians with different competitive capabilities is estimated. The simulation results show that the proposed modelling framework, principles and methods are effective, and the model has a strong capability to describe, represent and explain the reality of evacuation.

Published in:

Intelligent Transport Systems, IET  (Volume:7 ,  Issue: 1 )