Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

“EChO” Reconfigurable Power Management Unit for Energy Reduction in Sleep-Active Transitions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Alioto, M. ; Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore, Singapore ; Consoli, E. ; Rabaey, J.M.

A novel reconfigurable switched-capacitor “EChO” Power Management Unit is introduced for ultra-low power duty-cycled integrated systems (e.g., sensor nodes for critical event monitoring). “EChO” reduces the energy cost associated with sleep-to-active and active-to sleep transitions by 64% with an area overhead less than 1% and no impact on active mode operation. Analysis shows that approximately the same energy reduction is achieved over a very wide range of operating conditions and design constraints (e.g., ratio between flying and decoupling capacitances, granularity of the capacitor array). Measurements show 25-30% system power saving for a 65-nm testchip implementation of the “EChO” PMU powering a 16-kgate processing unit and a 2-kbit SRAM at 0.55-V voltage in active mode, assuming a 1-s wakeup cycle, 6.25-12.5% activity and a processing task of 250 cycles. The technique can be synergistically employed with traditional reconfiguration techniques that focus on efficiency in active mode (ignoring active-sleep transitions) to sum up the benefits.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:48 ,  Issue: 8 )