By Topic

Advancements in OCV Measurement and Analysis for Lithium-Ion Batteries

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mathias Petzl ; Helmholtz Institute Ulm Electrochemical Energy Storage, 89081 Ulm, Germany ; Michael A. Danzer

Incremental open-circuit voltage (OCV) curves and low-current charge/discharge voltage profiles of a lithium-ion (Li-ion) battery are compared and evaluated for optimizing measurement time and resolution. Since these curves are often used for further analysis, minimizing kinetic contributions is crucial for approximating battery OCV behavior. In this context, an incremental OCV measurement is characterized by state of charge (SOC) intervals and relaxation times. Various constant low C-rates, SOC intervals, and relaxation times are tested for approximating OCV behavior. Differential capacity and voltage analysis is used to check whether the main electrode features can be resolved satisfactorily. An interpolation method yields additional data points for the differential analysis of incremental OCV curves. It is shown that incremental OCV measurements are suitable for an approximation of battery OCV behavior, rather than low current-voltage profiles. Furthermore, extrapolation of voltage relaxation enables the estimation of fully relaxed OCV.

Published in:

IEEE Transactions on Energy Conversion  (Volume:28 ,  Issue: 3 )