By Topic

Conditional Alignment Random Fields for Multiple Motion Sequence Alignment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Minyoung Kim ; Dept. of Electron. & IT Media Eng., Seoul Nat. Univ. of Sci. & Technol., Seoul, South Korea

We consider the multiple time-series alignment problem, typically focusing on the task of synchronizing multiple motion videos of the same kind of human activity. Finding an optimal global alignment of multiple sequences is infeasible, while there have been several approximate solutions, including iterative pairwise warping algorithms and variants of hidden Markov models. In this paper, we propose a novel probabilistic model that represents the conditional densities of the latent target sequences which are aligned with the given observed sequences through the hidden alignment variables. By imposing certain constraints on the target sequences at the learning stage, we have a sensible model for multiple alignments that can be learned very efficiently by the EM algorithm. Compared to existing methods, our approach yields more accurate alignment while being more robust to local optima and initial configurations. We demonstrate its efficacy on both synthetic and real-world motion videos including facial emotions and human activities.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:35 ,  Issue: 11 )