By Topic

Study on the Addressing Characteristics of an ac PDP With Sc-Doped MgO-Protecting Layer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Kim, J.-K. ; Department of Electrical and Information Engineering, Seoul National University of Science and Technology, Seoul, Korea

In this paper, the addressing characteristics of an ac plasma display panel (PDP) with Sc-doped MgO-protecting layer are investigated. The characteristics of addressing voltage and temporal distribution of addressing discharge event in Sc-doped MgO panel are different from those in a conventional MgO panel. In particular, the characteristics depending on the operation temperature are changed drastically in Sc-doped MgO panel. The formative discharge time lag increases as the addressing pulse application time and operation temperature increase regardless of protecting layers. The statistical time lag shows the contrary trend compared to the formative discharge time lag except for the MgO when operated in room temperature. The variation of addressing voltage and temporal distribution of addressing discharge event in different protecting layers can be understood through the survey of previous research result on the exoelectron emission characteristics from protecting layers in an ac PDP. It is assumed that the emission of electrons from a protecting layer results in the decrease of wall voltage but increase of priming effect for the addressing discharge. Also, the possibility for the control of addressing characteristics is suggested by changing scan voltage level during address period.

Published in:

Plasma Science, IEEE Transactions on  (Volume:41 ,  Issue: 8 )