By Topic

A statistical approach to mining customers' conversational data from social media

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
D. Konopnicki ; IBM Research Division, Haifa Research Laboratory, Haifa University Campus, Haifa, Haifa ; M. Shmueli-Scheuer ; D. Cohen ; B. Sznajder
more authors

In this paper, we present one possible way of analyzing social media conversional data in order to better understand customers. Ultimately, our goal is to analyze customer behavior as it is expressed in free-form conversations and extract from it commercially valuable information about the customer. In this study, we concentrate on using statistical techniques for analyzing this unstructured data at two levels: 1) at the level of the words used in the conversation and 2) by mapping those words to abstract concepts. The goal of such a statistical analysis is twofold. First, the statistically significant terms used by the users and the concepts associated with them provide insight on a user's interests that commercial services can use, for example, in order to target advertisements. In addition, knowing the evolution of a customer's interests and hobbies can be exploited commercially by retailers, media and entertainment companies, telecommunications companies, and more. In this paper, we describe a general framework for the analysis of social media data and, in turn, the application of the framework to the statistical analysis of the language of tweets.

Note: The Institute of Electrical and Electronics Engineers, Incorporated is distributing this Article with permission of the International Business Machines Corporation (IBM) who is the exclusive owner. The recipient of this Article may not assign, sublicense, lease, rent or otherwise transfer, reproduce, prepare derivative works, publicly display or perform, or distribute the Article.  

Published in:

IBM Journal of Research and Development  (Volume:57 ,  Issue: 3/4 )