By Topic

Contextualized Trajectory Parsing with Spatio-Temporal Graph

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiaobai Liu ; Huazhong University of Science Technology, China and University of California at Los Angeles, Los Angeles ; Liang Lin ; Hai Jin

This work investigates how to automatically parse object trajectories in surveillance videos, that aims to jointly solve three subproblems: i) spatial segmentation, ii) temporal tracking, and iii) object categorization. We present a novel representation spatio-temporal graph (ST-Graph), in which: i) graph nodes express the motion primitives, each representing a short sequence of small-size patches over consecutive images; and ii) every two neighbor nodes are linked with either a positive edge or a negative edge to describe their collaborative or exclusive relationship of belonging to the same object trajectory. Phrasing the trajectory parsing as a graph multi-coloring problem, we propose a unified probabilistic formulation to integrate various types of context knowledge as informative priors. An efficient composite cluster sampling algorithm is employed in search of the optimal solution by exploiting both the collaborative and the exclusive relationships between nodes. The proposed framework is evaluated over challenging videos from public datasets, and results show that it can achieve state-of-the-art tracking accuracy.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:PP ,  Issue: 99 )