By Topic

Likelihood-Ratio-Based Verification in High-Dimensional Spaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hendrikse, A. ; Signals & Syst. Group, Univ. of Twente, Overijsel, Netherlands ; Veldhuis, R. ; Spreeuwers, L.

The increase of the dimensionality of data sets often leads to problems during estimation, which are denoted as the curse of dimensionality. One of the problems of second-order statistics (SOS) estimation in high-dimensional data is that the resulting covariance matrices are not full rank, so their inversion, for example, needed in verification systems based on the likelihood ratio, is an ill-posed problem, known as the singularity problem. A classical solution to this problem is the projection of the data onto a lower dimensional subspace using principle component analysis (PCA) and it is assumed that any further estimation on this dimension-reduced data is free from the effects of the high dimensionality. Using theory on SOS estimation in high-dimensional spaces, we show that the solution with PCA is far from optimal in verification systems if the high dimensionality is the sole source of error. For moderate dimensionality, it is already outperformed by solutions based on euclidean distances and it breaks down completely if the dimensionality becomes very high. We propose a new method, the fixed-point eigenwise correction, which does not have these disadvantages and performs close to optimal.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:36 ,  Issue: 1 )