By Topic

Bounds on the Capacity of Random Insertion and Deletion-Additive Noise Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rahmati, M. ; Sch. of Electr., Arizona State Univ., Tempe, AZ, USA ; Duman, T.M.

We develop several analytical lower bounds on the capacity of binary insertion and deletion channels by considering independent uniformly distributed (i.u.d.) inputs and computing lower bounds on the mutual information between the input and output sequences. For the deletion channel, we consider two different models: i.i.d. deletion-substitution channel and i.i.d. deletion channel with additive white Gaussian noise (AWGN). These two models are considered to incorporate effects of the channel noise along with the synchronization errors. For the insertion channel case, we consider Gallager's model in which the transmitted bits are replaced with two random bits and uniform over the four possibilities independently of any other insertion events. The general approach taken is similar in all cases, however the specific computations differ. Furthermore, the approach yields a useful lower bound on the capacity for a wide range of deletion probabilities of the deletion channels, while it provides a beneficial bound only for small insertion probabilities (less than 0.25) of the insertion model adopted. We emphasize the importance of these results by noting that: 1) our results are the first analytical bounds on the capacity of deletion-AWGN channels, 2) the results developed are the best available analytical lower bounds on the deletion-substitution case, 3) for the Gallager insertion channel model, the new lower bound improves the existing results for small insertion probabilities.

Published in:

Information Theory, IEEE Transactions on  (Volume:59 ,  Issue: 9 )