By Topic

A Meet-in-the-Middle Algorithm for Fast Synthesis of Depth-Optimal Quantum Circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Matthew Amy ; Institute for Quantum Computing and David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada ; Dmitri Maslov ; Michele Mosca ; Martin Roetteler

We present an algorithm for computing depth-optimal decompositions of logical operations, leveraging a meet-in-the-middle technique to provide a significant speedup over simple brute force algorithms. As an illustration of our method, we implemented this algorithm and found factorizations of commonly used quantum logical operations into elementary gates in the Clifford+T set. In particular, we report a decomposition of the Toffoli gate over the set of Clifford and T gates. Our decomposition achieves a total T-depth of 3, thereby providing a 40% reduction over the previously best known decomposition for the Toffoli gate. Due to the size of the search space, the algorithm is only practical for small parameters, such as the number of qubits, and the number of gates in an optimal implementation.

Published in:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems  (Volume:32 ,  Issue: 6 )