By Topic

Legged Self-Manipulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
2 Author(s)
Aaron M. Johnson ; Electrical and Systems Engineering Department, University of Pennsylvania, Philadelphia, PA, USA ; Daniel E. Koditschek

This paper introduces self-manipulation as a new formal design methodology for legged robots with varying ground interactions. The term denotes a set of modeling choices that permit a uniform and body-centric representation of the equations of motion - essentially a guide to the selection and configuration of coordinate frames. We present the hybrid system kinematics, dynamics, and transitions in the form of a consistently structured representation that simplifies and unites the account of these, otherwise bewilderingly diverse differential algebraic equations. Cleaving as closely as possible to the modeling strategies developed within the mature manipulation literature, self-manipulation models can leverage those insights and results where applicable, while clarifying the fundamental differences. Our primary motivation is not to facilitate numerical simulation but rather to promote design insight. We instantiate the abstract formalism for a simplified model of RHex, and illustrate its utility by applying a variety of analytical and computational techniques to derive new results bearing on behaviors, controllers, and platform design. For each example, we present empirical results documenting the specific benefits of the new insight into the robot's transitions from standing to moving in place and to leaping.

Selected coordinate frames for self-manipulation of a legged robot, where the object frame O is connected to the world but co-located with the palm frame P on the robot.

Published in:

IEEE Access  (Volume:1 )
Comment Policy
comments powered by Disqus