By Topic

A new short-term load forecasting approach using self-organizing fuzzy ARMAX models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hong-Tzer Yang ; Dept. of Electr. Eng., Chung Yuan Christian Univ., Chung Li, Taiwan ; Chao-Ming Huang

This paper proposes a new self-organizing model of fuzzy autoregressive moving average with exogenous input variables (FARMAX) for one day ahead hourly load forecasting of power systems. To achieve the purpose of self-organizing the FARMAX model, identification of the fuzzy model is formulated as a combinatorial optimization problem. Then a combined use of heuristics and evolutionary programming (EP) scheme is relied on to solve the problem of determining optimal number of input variables, best partition of fuzzy spaces and associated fuzzy membership functions. The proposed approach is verified by using diverse types of practical load and weather data for Taiwan Power (Taipower) systems. Comparisons are made of forecasting errors with the existing ARMAX model implemented by the commercial SAS package and an artificial neural networks (ANNs) method

Published in:

IEEE Transactions on Power Systems  (Volume:13 ,  Issue: 1 )