By Topic

Probabilistic Non-Local Means

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yue Wu ; Tufts Univ., Medford, MA, USA ; Tracey, B. ; Natarajan, P. ; Noonan, J.P.

In this letter, we propose a so-called probabilistic non-local means (PNLM) method for image denoising. Our main contributions are: 1) we point out defects of the weight function used in the classic NLM; 2) we successfully derive all theoretical statistics of patch-wise differences for Gaussian noise; and 3) we employ this prior information and formulate the probabilistic weights truly reflecting the similarity between two noisy patches. Our simulation results indicate the PNLM outperforms the classic NLM and many NLM recent variants in terms of the peak signal noise ratio (PSNR) and the structural similarity (SSIM) index. Encouraging improvements are also found when we replace the NLM weights with the PNLM weights in tested NLM variants.

Published in:

Signal Processing Letters, IEEE  (Volume:20 ,  Issue: 8 )