By Topic

Radiation Hardness Assurance Testing of Microelectronic Devices and Integrated Circuits: Radiation Environments, Physical Mechanisms, and Foundations for Hardness Assurance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
James R. Schwank ; Sandia National Laboratories, Albuquerque, NM, USA ; Marty R. Shaneyfelt ; Paul E. Dodd

This document describes the radiation environments, physical mechanisms, and test philosophies that underpin radiation hardness assurance test methodologies. The natural space radiation environment is presented, including the contributions of both trapped and transient particles. The effects of shielding on radiation environments are briefly discussed. Laboratory radiation sources used to simulate radiation environments are covered, including how to choose appropriate sources to mimic environments of interest. The fundamental interactions of radiation with materials via direct and indirect ionization are summarized. Some general test considerations are covered, followed by in-depth discussions of physical mechanisms and issues for total dose and single-event effects testing. The purpose of this document is to describe why the test protocols we use are constructed the way they are. In other words, to answer the question: “Why do we test it that way”?

Published in:

IEEE Transactions on Nuclear Science  (Volume:60 ,  Issue: 3 )