By Topic

Radarsat-2 Polarimetric SAR Data for Boreal Forest Classification Using SVM and a Wrapper Feature Selector

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Maghsoudi, Y. ; Dept. of Geomatics & Geodesy, K.N. Toosi Univ. of Technol., Tehran, Iran ; Collins, M.J. ; Leckie, D.G.

The main objective is to propose a wrapper feature selection algorithm for analyzing the Radarsat-2 polarimetric SAR data for the classification of boreal forest. The method is based on the concept of feature selection and classifier ensemble. The support vector machine (SVM) algorithm is used as the classifier. The limitation of SVM as the evaluation function for feature selection is its time-consuming optimization. To accelerate the SVM training process, a training sample reduction strategy based on the notion of support vectors is proposed. Two fine quad-polarized Radarsat-2 images, which were acquired in leaf-on and leaf-off seasons, were chosen for this study. A wide range of SAR parameters were derived from each PolSAR image. A combined dataset was also considered. The classification results compared to the baseline methods demonstrate the effectiveness of the proposed wrapper scheme for forest classification.

Published in:

Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of  (Volume:6 ,  Issue: 3 )