By Topic

Transductive Face Sketch-Photo Synthesis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Nannan Wang ; Center for Opt. IMagery Anal. & Learning, Xi'an Inst. of Opt. & Precision Mech., Xi'an, China ; Dacheng Tao ; Xinbo Gao ; Xuelong Li
more authors

Face sketch-photo synthesis plays a critical role in many applications, such as law enforcement and digital entertainment. Recently, many face sketch-photo synthesis methods have been proposed under the framework of inductive learning, and these have obtained promising performance. However, these inductive learning-based face sketch-photo synthesis methods may result in high losses for test samples, because inductive learning minimizes the empirical loss for training samples. This paper presents a novel transductive face sketch-photo synthesis method that incorporates the given test samples into the learning process and optimizes the performance on these test samples. In particular, it defines a probabilistic model to optimize both the reconstruction fidelity of the input photo (sketch) and the synthesis fidelity of the target output sketch (photo), and efficiently optimizes this probabilistic model by alternating optimization. The proposed transductive method significantly reduces the expected high loss and improves the synthesis performance for test samples. Experimental results on the Chinese University of Hong Kong face sketch data set demonstrate the effectiveness of the proposed method by comparing it with representative inductive learning-based face sketch-photo synthesis methods.

Published in:

Neural Networks and Learning Systems, IEEE Transactions on  (Volume:24 ,  Issue: 9 )