By Topic

Effects of Topography on the Radiometry of CHRIS/PROBA Images of Successional Stages Within Tropical Dry Forests

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Garcia Millan, V.E. ; Area of Phys. Geogr., Univ. Pablo de Olavide, Sevilla, Spain ; Azofeifa, G.A.S. ; Malvarez, G.C. ; More, G.
more authors

In the present paper, the effect of shadows in the classification of three successional stages of a tropical dry forest (TDF) in Mexico, using hyperspectral and multi-angular CHRIS/PROBA images, is evaluated. An algorithm based on the cosine of the angle of solar incidence on the terrain is applied to correct the effect of topography on CHRIS/PROBA reflectances. Previous to the removal of shadows caused by topography, CHRIS/PROBA images were atmospherically corrected in BEAM software. Vegetation maps of the study site were generated using non-parametric decision trees, defining four main classes: late, intermediate and early stages of forest succession within a tropical dry forest, and riparian forests. By comparing the vegetation maps before and after shadow removal in CHRIS/PROBA spectral data, it was observed that the late stage of succession and riparian forests are overestimated for the non-corrected images while intermediate and early stages of succession are underestimated. Errors in classification are more important for the large CHRIS/PROBA viewing angles. Therefore, the removal of shadows caused by topography is necessary for an accurate classification of successional stages in tropical dry forests.

Published in:

Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of  (Volume:6 ,  Issue: 3 )