By Topic

The Entropy of Conditional Markov Trajectories

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kafsi, M. ; Sch. of IC, EPFL, Lausanne, Switzerland ; Grossglauser, M. ; Thiran, P.

To quantify the randomness of Markov trajectories with fixed initial and final states, Ekroot and Cover proposed a closed-form expression for the entropy of trajectories of an irreducible finite state Markov chain. Numerous applications, including the study of random walks on graphs, require the computation of the entropy of Markov trajectories conditional on a set of intermediate states. However, the expression of Ekroot and Cover does not allow for computing this quantity. In this paper, we propose a method to compute the entropy of conditional Markov trajectories through a transformation of the original Markov chain into a Markov chain that exhibits the desired conditional distribution of trajectories. Moreover, we express the entropy of Markov trajectories-a global quantity-as a linear combination of local entropies associated with the Markov chain states.

Published in:

Information Theory, IEEE Transactions on  (Volume:59 ,  Issue: 9 )