Cart (Loading....) | Create Account
Close category search window
 

Probabilistic Matchmaking Methods for Automated Service Discovery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cassar, G. ; University of Surrey, Guildford ; Barnaghi, P. ; Moessner, K.

Automated service discovery enables human users or software agents to form queries and to search and discover the services based on different requirements. This enables implementation of high-level functionalities such as service recommendation, composition, and provisioning. The current service search and discovery on the Web is mainly supported by text and keyword based solutions which offer very limited semantic expressiveness to service developers and consumers. This paper presents a method using probabilistic machine-learning techniques to extract latent factors from semantically enriched service descriptions. The latent factors are used to construct a model to represent different types of service descriptions in a vector form. With this transformation, heterogeneous service descriptions can be represented, discovered, and compared on the same homogeneous plane. The proposed solution is scalable to large service datasets and provides an efficient mechanism that enables publishing and adding new services to the registry and representing them using latent factors after deployment of the system. We have evaluated our solution against logic-based and keyword-based service search and discovery solutions. The results show that the proposed method performs better than other solutions in terms of precision and normalised discounted cumulative gain values.

Published in:

Services Computing, IEEE Transactions on  (Volume:PP ,  Issue: 99 )

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.