By Topic

Dual Mode Logic—Design for Energy Efficiency and High Performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
2 Author(s)
Itamar Levi ; Electrical and Computer Engineering Department, Ben-Gurion University, Beer-Sheva, Israel ; Alexander Fish

The recently proposed dual mode logic (DML) gates family enables a very high level of energy-delay optimization flexibility at the gate level. In this paper, this flexibility is utilized to improve energy efficiency and performance of combinatorial circuits by manipulating their critical and noncritical paths. An approach that locates the design's critical paths and operates these paths in the boosted performance mode is proposed. The noncritical paths are operated in the low energy DML mode, which does not affect the performance of the design, but allows significant energy consumption reduction. The proposed approach is analyzed on a 128 bit carry skip adder. Simulations, carried out in a standard 40 nm digital CMOS process with , show that the proposed approach allows performance improvement of X2 along with reduction of energy consumption of X2.5, as compared with a standard CMOS implementation. At , improvements of 1.3X and 1.5X in performance and energy are achieved, respectively.

Dual Mode Logic Design for Energy Efficiency and High Performance. Dual Mode Logic Design for Energy Efficiency and High Performance.

Published in:

IEEE Access  (Volume:1 )
Comment Policy
comments powered by Disqus