By Topic

Single Image Dehazing by Multi-Scale Fusion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ancuti, C.O. ; Expertise Center for Digital Media, Hasselt Univ., Diepenbeek, Belgium ; Ancuti, C.

Haze is an atmospheric phenomenon that significantly degrades the visibility of outdoor scenes. This is mainly due to the atmosphere particles that absorb and scatter the light. This paper introduces a novel single image approach that enhances the visibility of such degraded images. Our method is a fusion-based strategy that derives from two original hazy image inputs by applying a white balance and a contrast enhancing procedure. To blend effectively the information of the derived inputs to preserve the regions with good visibility, we filter their important features by computing three measures (weight maps): luminance, chromaticity, and saliency. To minimize artifacts introduced by the weight maps, our approach is designed in a multiscale fashion, using a Laplacian pyramid representation. We are the first to demonstrate the utility and effectiveness of a fusion-based technique for dehazing based on a single degraded image. The method performs in a per-pixel fashion, which is straightforward to implement. The experimental results demonstrate that the method yields results comparative to and even better than the more complex state-of-the-art techniques, having the advantage of being appropriate for real-time applications.

Published in:

Image Processing, IEEE Transactions on  (Volume:22 ,  Issue: 8 )