By Topic

A Quantum-Inspired Evolutionary Algorithm for Multi-Objective Design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ho, S.L. ; Dept. of Electr. Eng., Hong Kong Polytech. Univ., Hong Kong, China ; Shiyou Yang ; Peihong Ni ; Jin Huang

To explore the full potential of Quantum-inspired Evolutionary Algorithms (QEA) in multiobjective design optimizations, a vector QEA is proposed. To fulfill the two ultimate goals of a vector optimizer in finding and uniformly sampling the Pareto front of a multi-objective inverse problem, a fitness assignment formula to consider the number of improvements in the whole objective functions and the amount of the improvement in a specified objective function, as well as the use of a selection mechanism in choosing the so far searched best solutions, are proposed in this paper. The information sharing and the increment angle updating components of the scalar QEA have also been redesigned according to the characteristics of multi-objective inverse problems. Numerical results on two case studies are presented to validate the proposed vector QEA.

Published in:

Magnetics, IEEE Transactions on  (Volume:49 ,  Issue: 5 )