By Topic

High-Order Error-Optimized FDTD Algorithm With GPU Implementation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Zygiridis, T.T. ; Dept. of Inf. & Telecommun. Eng., Univ. of Western Macedonia, Kozani, Greece

This paper presents the development of a two-dimensional (2-D) finite-difference time-domain (FDTD) solver that features reliable calculations and reduced simulation times. The accuracy of computations is guaranteed by specially-designed spatial operators with extended stencils, which are assisted by an optimized version of a high-order leapfrog integrator. Both discretization schemes rely on error-minimization concepts, and a proper least-squares treatment facilitates further control in a wideband sense. Given the parallelization capabilities of explicit FDTD algorithms, considerable speedup compared to serialized CPU calculations is accomplished by implementing the proposed algorithm on a modern graphics processing unit (GPU). As our study shows, the GPU version of our technique reduces computing times by several times, thus confirming its designation as a highly-efficient algorithm.

Published in:

Magnetics, IEEE Transactions on  (Volume:49 ,  Issue: 5 )