Cart (Loading....) | Create Account
Close category search window
 

Airborne Wind Energy Based on Dual Airfoils

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zanon, M. ; Electr. Eng. Dept. & the Optimization in Eng. Center, K. . Leuven, Leuven-Heverlee, Belgium ; Gros, S. ; Andersson, J. ; Diehl, M.

The airborne wind energy (AWE) paradigm proposes to generate energy by flying a tethered airfoil across the wind flow at a high velocity. Although AWE enables flight in higher altitude and stronger wind layers, the extra drag generated by the tether motion imposes a significant limit to the overall system efficiency. To address this issue, two airfoils with a shared tether can reduce overall system drag. Although this technique may improve the efficiency of AWE systems, such improvement can only be achieved through properly balancing the system trajectories and parameters. This brief tackles that problem using optimal control. A generic procedure for modeling multiple-airfoil systems with equations of minimal complexity is proposed. A parametric study shows that at small and medium scales, dual-airfoil systems are significantly more efficient than single-airfoil systems, but they are less advantageous at very large scales.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:21 ,  Issue: 4 )

Date of Publication:

July 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.