By Topic

Appraisal of Surrogate Modeling Techniques: A Case Study of Electromagnetic Device

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Marcus H. S. Mendes $^{1}$Evolutionary Computation Laboratory, PPGEE,, Federal University of Minas Gerais,, Belo Horizonte , Brazil ; Gustavo L. Soares ; Jean-Louis Coulomb ; João A. Vasconcelos

Simulations are successfully utilized to reproduce the behavior of complex systems in many knowledge fields. The computational effort is a key factor when high-cost simulations are required in optimization, principally, if the system to be optimized operates under uncertain conditions. In this context, surrogate modeling is useful to alleviate the CPU time. Hence, this paper presents a methodology to assess three surrogate techniques based on genetic programming (GP), a radial basis function neural network (RBF-NNs), and universal Kriging. These techniques are used in this paper to obtain analytical optimization functions that are accurate, fast to evaluate and suitable for interval robust optimization. The experiments were performed in a robust version of the TEAM 22 problem. The results show that the surrogate models obtained are reliable and appropriate for interval robust methods. The methodology presented is flexible and extensible to other problems in diverse fields of interest.

Published in:

IEEE Transactions on Magnetics  (Volume:49 ,  Issue: 5 )