By Topic

Extension of Time-Domain Finite Element Method to Nonlinear Frequency-Sweeping Problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ho, S.L. ; Dept. of Electr. Eng., Hong Kong Polytech. Univ., Hong Kong, China ; Xiu Zhang ; Fu, W.N.

Applications of magnetic-resonant wireless power transfer technology have been extensively researched because of its high efficiency, security and convenience. To recharge batteries, the induced ac voltage in the receiver coil of wireless systems must be rectified to dc, hence the power transfer systems are inevitably nonlinear. In this paper, a novel approach based on time-domain finite element method (FEM) is presented to analyze the nonlinear system in order to obtain frequency-sweeping solutions quickly. At the first step of the proposed method, the wireless power transfer system, excluding the rectifier circuit, will be equivalent to a voltage source and a general impedance at different frequencies. The equivalent circuit is then connected to the rectifier circuit. Numerical example being reported in this paper indicates that the results obtained using the proposed methodology are consistent with those obtained using traditional time-domain FEM method. If solutions at different operating frequencies are required, the proposed method can save a lot of computation time, because one just needs to solve the field problem using the time-domain FEM twice. From the numerical example on the performance analysis of the wireless power transfer system being studied, the computing time of the proposed time-domain method is only 2% of that required if traditional time-domain FEM method is used.

Published in:

Magnetics, IEEE Transactions on  (Volume:49 ,  Issue: 5 )