Cart (Loading....) | Create Account
Close category search window

Location-Based Crowdsourcing for Vehicular Communication in Hybrid Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wu, D. ; Department of Computer Science, University of California, Irvine , CA, USA ; Zhang, Y. ; Bao, L. ; Regan, A.C.

It is a challenge to design efficient routing protocols for vehicular ad hoc networks (VANETs) because of their highly dynamic properties. We address the vehicular communication problem in urban hybrid networks and present a hybrid routing scheme for data dissemination in VANETs. Location-based crowdsourcing of nearby roadside units (RSUs) has been applied to the infrastructural support of inter-vehicle, vehicle-to-roadside, and inter-roadside communications in hybrid VANETs. The combination of RSU resources and ad hoc networks involves an online probabilistic RSU retrieval algorithm that uses coarse- and fine-grained localization to estimate the number and location of available RSUs; a network coding based multicast routing for dense VANETs using maximum distance separation (MDS) code and local topology information from the forwarding set to achieve robust communication and max-flow min-cut data dissemination; an application of opportunistic routing, using a carry-and-forward scheme to solve the forwarding disconnection problem in sparse VANETs; and a routing switch mechanism to guarantee quality of service (QoS) under various network connectivity and deployment configurations. The performance of our hybrid routing scheme is evaluated using both simulations and real testbed experiments.

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:14 ,  Issue: 2 )

Date of Publication:

June 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.