By Topic

Segment-Based Classification of Damaged Building Roofs in Aerial Laser Scanning Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Khoshelham, K. ; Fac. of Geoinf. Sci. & Earth Obs. (ITC), Univ. of Twente, Enschede, Netherlands ; Oude Elberink, S. ; Sudan Xu

Identifying damaged buildings after natural disasters such as earthquake is important for the planning of recovery actions. We present a segment-based approach to classifying damaged building roofs in aerial laser scanning data. A challenge in the supervised classification of point segments is the generation of training samples, which is difficult because of the complexity of interpreting point clouds. We evaluate the performance of three different classifiers trained with a small set of training samples and show that feature selection improves the training and the accuracy of the resulting classification. When trained with 50 training samples, a linear discriminant classifier using a subset of six features reaches a classification accuracy of 85%.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:10 ,  Issue: 5 )