By Topic

Machine Vision-Based Defect Detection in IC Images Using the Partial Information Correlation Coefficient

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chien-Chih Wang ; Ming Chi University of Technology, Taiwan ; Bernard C. Jiang ; Jing-You Lin ; Chien-Cheng Chu

The normalized cross correlation coefficient is a prevalent pattern-matching algorithm in machine vision for industrial inspections. Despite its common use, there are problems with practical applications. For instance, false alarms occur since it is highly sensitive to environmental changes or inspection equipment, not to mention it requires complex calculations. This paper proposes the partial information correlation coefficient (PICC) method to improve the traditional normalized cross correlation coefficient (TNCCC). The PICC uses the technique of significant points to calculate the correlation coefficient. An experiment is also conducted to demonstrate the application through many image samples from the IC industry, such as PCBs, BGAs, and ICs. The results show that the PICC can effectively reduce false alarms in defect detection.

Published in:

IEEE Transactions on Semiconductor Manufacturing  (Volume:26 ,  Issue: 3 )