By Topic

Dual concentric-sectored HIFU transducer with phase-shifted ultrasound excitation for expanded necrotic region: a simulation study

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Jong Seob Jeong ; Dept. of Med. Biotechnol., Dongguk Univ. - Seoul, Seoul, South Korea

In high-intensity focused ultrasound (HIFU) surgery, it is desirable to produce a large necrotic area per sonication for reduced treatment time. It has been well known that the conventional split-focus scheme capable of generating multiple foci can increase a necrotic region in the lateral or elevational direction. To treat a deep-seated target, it is necessary to generate an expanded necrotic region in the axial direction. In this paper, a novel sonication scheme capable of producing an expanded coagulated region in the both lateral and axial directions is presented. The proposed method can generate multi-focal spots in the lateral and axial directions by using a dual concentric-sectored (DCS) HIFU transducer based on phase-shifted ultrasound excitation. A sound field simulation was employed for this investigation. Four electrical signals with identical center frequencies and different phases activated the DCS transducer, composed of a disc and an annular element with a confocal point. Four 4-MHz ultrasound signals with different phases were transmitted to the target simultaneously, resulting in generation of dual-focal spots in the lateral and axial directions. The sound field simulation results showed that the ¿6-dB lateral and axial beamwidths of the DCS transducer were maximally 79% and 91% broader than the single-element transducer. Subsequently, bio-heat transfer and thermal dose simulation results were matched to the sound field simulation. Hence, the DCS HIFU transducer combined with phase-shifted excitation may be a promising approach to treat a deep-seated target and to reduce treatment time for HIFU surgery.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:60 ,  Issue: 5 )