Cart (Loading....) | Create Account
Close category search window

Phase shift variance imaging - a new technique for destructive microbubble imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Siepmann, M. ; Dept. of Med. Eng., Ruhr-Univ. Bochum, Bochum, Germany ; Fokong, S. ; Mienkina, M.P. ; Novak, M.
more authors

The detection of microbubble contrast agents with ultrasound imaging techniques is the subject of ongoing research. Commonly, the nonlinear response of the agent is employed for detection. The performance of these techniques is, however, affected by nonlinear sound propagation. As an alternative, the change in echo response resulting from microbubble destruction can be employed to detect the agent. In this work, we propose a novel criterion for microbubble destruction detection that allows the rejection of tissue at a defined significance level even for highly echogenic structures in the presence of nonlinear propagation. Most clinical systems provide the hardware requirements for acquisitions consisting of multiple pulses transmitted at the same position, as used in Doppler imaging. Therefore, we develop a processing strategy that distinguishes contrast agent from other stationary or moving structures using these sequences. The proposed criterion is based on the variance of the phase shift of consecutive echoes in the sequence, which, in addition to tissue rejection, permits the distinction of motion from agent disruption. Phantom experiments are conducted to show the validity of the criterion and demonstrate the performance of the new method for contrast detection. Each detection series consists of 20 identical pulses at 9.5 MHz (4.7 MPa peak negative pressure) transmitted at a pulse repetition frequency of 5 kHz. The sequence is applied to phantoms under varied motion and flow conditions. As a first step toward molecular imaging, the technique is applied to microbubbles targeted to vascular endothelial growth factor receptor 2 (VEGFR2) in vitro. The results show a uniform rejection of the background signal while maintaining a contrast enhancement by more than 40 dB. The area under the receiver operating characteristics (ROC) curve is used as the performance metric for the separation of contrast agent and tissue signals, and values larger than 97% demonstrate tha- an excellent separation was achieved.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:60 ,  Issue: 5 )

Date of Publication:

May 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.