Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. For technical support, please contact us at onlinesupport@ieee.org. We apologize for any inconvenience.
By Topic

Development and initial application of a fully integrated photoacoustic micro-ultrasound system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Needles, A. ; VisualSonics Inc., Toronto, ON, Canada ; Heinmiller, A. ; Sun, J. ; Theodoropoulos, C.
more authors

Photoacoustic (PA) imaging for biomedical applications has been under development for many years. Based on the many advances over the past decade, a new photoacoustic imaging system has been integrated into a micro-ultrasound platform for co-registered PA¿ultrasound (US) imaging. The design and implementation of the new scanner is described and its performance quantified. Beamforming techniques and signal processing are described, in conjunction with in vivo PA images of normal subcutaneous mouse tissue and selected tumor models. In particular, the use of the system to estimate the spatial distribution of oxygen saturation (sO2) in blood and co-registered with B-mode images of the surrounding anatomy are investigated. The system was validated in vivo against a complementary technique for measuring partial pressure of oxygen in blood (pO2). The pO2 estimates were converted to sO2 values based on a standard dissociation curve found in the literature. Preliminary studies of oxygenation effects were performed in a mouse model of breast cancer (MDA-MB-231) in which control mice were compared with mice treated with a targeted antiangiogenic agent over a 3 d period. Treated mice exhibited a >90% decrease in blood volume, an 85% reduction in blood wash-in rate, and a 60% decrease in relative tissue oxygenation.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:60 ,  Issue: 5 )