By Topic

Joint Opportunistic Scheduling and Selective Channel Feedback

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Karaca, M. ; Fac. of Eng. & Natural Sci., Sabanci Univ., Istanbul, Turkey ; Sarikaya, Y. ; Ercetin, O. ; Alpcan, T.
more authors

It is well known that Max-Weight type scheduling algorithms are throughput optimal since they achieve the maximum throughput while maintaining the network stability. However, the majority of existing works employing Max-Weight algorithm require the complete channel state information (CSI) at the scheduler without taking into account the associated overhead. In this work, we design a Scheduling and Selective Feedback algorithm (SSF) taking into account the overhead due to acquisition of CSI. SSF algorithm collects CSI from only those users with sufficiently good channel quality so that it always schedules the user with the highest queue backlog and channel rate product at every slot. We characterize the achievable rate region of SSF algorithm by showing that SSF supports 1 + ϵ fraction of the rate region when CSI from all users are collected. We also show that the value of ϵ depends on the expected number of users which do not send back their CSI to the base station. For homogenous and heterogeneous channel conditions, we determine the minimum number of users that must be present in the network so that the rate region is expanded, i.e., ϵ > 0. We also demonstrate numerically in a realistic simulation setting that this rate region can be achieved by collecting CSI from only less than 50% of all users in a CDMA based cellular network utilizing high data rate (HDR) protocol.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:12 ,  Issue: 6 )