Cart (Loading....) | Create Account
Close category search window

Probing dual mode emission of Eu3+ in garnet phosphor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Singh, S.K. ; Department of Applied Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India ; Gi Lee, Dong ; Soo Yi, Soung ; Jang, Kiwan
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Eu3+ doped and Eu3+, Yb3+ co-doped Gd3Ga5O12 phosphors have been developed by facile solid state reaction method which can be easily scaled-up in large quantity. The synthesis has been optimized to get a single phase material at 1300 °C. The phase and crystal parameters have been analyzed by using X-ray diffraction measurement. Photoluminescence excitation (monitored for the 5D0 → 7F1 transition of Eu3+) depicts that the active ion (Eu3+) can be excited through direct excitation into 4f band of Eu3+, through charge transfer band (Eu3+-O2-) excitation and also through the excitation into 8S7/2 → 6IJ intra f–f transition of Gd3+ ion, which significantly all together cover a broad excitation region in 200–420 nm. In addition, in the presence of Yb3+ ions, the emission is also achieved by near infrared excitation (976 nm), through a typical upconversion (UC) process. Thus, the material efficiently behaves as a dual mode emitting phosphor (emission is achieved both through normal fluorescence and through UC process). The conversion efficiency of silicon solar cells is only 15% of terrestrial solar energy for 200–400 nm region and also the sub-band gap energy (in infrared region) is lost as heat; therefore, this kind of dual mode phosphors may be used to overcome the above mentioned incomplete utilization of the solar spectrum and can open realm of new possibilities for energy harvesting.

Published in:

Journal of Applied Physics  (Volume:113 ,  Issue: 17 )

Date of Publication:

May 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.